Question and revision problem of Advanced QM

Lecture 1. Basics concepts

1) Find the complex conjugate of (a) -4 , (b) $-2 i$, (c) $6+3 i$, (d) $2 e^{-i / 5}$.
2) Which of the following functions are normalizable over the indicated intervals?

Normalize those functions which can be normalized.
(a) $\exp \left(-a x^{2}\right)(-\infty, \infty)$;
(b) $\mathrm{e}^{\mathrm{x}}(0, \infty)$;
(c) $e^{i \Phi}(0,2 \pi)$;
(d) $x e^{-3 x}(0, \infty)$
2. Determine whether each of the following functions is acceptable as a wavefunction over the indicated interval.
(a) $1 / x(0, \infty)$;
(b) $\left(1-x^{2}\right)-1$
$(-1,1)$;
(c) $e^{-x} \cos (x)(0, \infty)$;
(d) $\tan ^{-1}(x)(0, \infty)$
3. Which of the following operators are Hermitian
(a) i
(b) * (take complex conjugate)
(c) $e^{i x}$
(d) $-\mathrm{id} / \mathrm{dx}$
(e) $i^{2} d / d x$
(f) $d^{2} d x^{2}$
(g) id2/dx2
4. True or False
(a) Nondegenerate eigenfunctions of the same operator are orthogonal.
(b) All Hermitian operators are real.
(c) If two operators commute with a third, they will commute with each other.
(d) $d \psi / d x$ must be continuous as long as the potential, $V(x)$, is finite.
(e) If a wavefunction is simultaneously the eigenfunction of two operators, it will also be an eigenfuncion of the product of the two operators.
5. Consider the following hypothetical PIB wavefunction: $\psi(x)=A(x-1) 0 \leq x \leq a$

Calculate: (a) A; (b) <x $\left.\mathrm{x}^{2}\right\rangle$; (c) $\langle\mathrm{p}\rangle$; (d) $\left\langle\mathrm{p}^{2}\right\rangle$
6. Consider the functions: $\psi 1=1 ; \psi 2=x ; \psi 3=x^{2}-1 / 3$.

Show that all three functions are orthogonal over the interval $[-1,1]$.
7. Calculate the commutator: [$\mathrm{d} / \mathrm{dx}, \mathrm{d} / \mathrm{dx}+\mathrm{x}$]
8. Calculate the commutator: $\left[P_{x}, X^{2}\right]$
9. Classify the following operators as linear or nonlinear:
(a) $3 x^{2} d^{2} / d x^{2}$; (b) () $)^{2}$ (square the function); (c) $\int($) $d x$ (integrate the function; (d) $\exp ()$ (exponentiate the function)
10. Which of the following functions are eigenfunctions of $d^{2} / d x^{2}$? For those that are eigenfunctions, determine the eigenvalues.
(a) $e^{2 x}$;
(b) x^{2};
(c) $\sin (8 x)$;
(d) $\sin (3 x)-\cos (3 x)$

Question and revision problem of Advanced QM

11. Which of the following functions (defined from $-\infty$ to ∞) would be acceptable one dimensional wavefunctions for a bound particle. (a) $\exp (-a x)$; (b) $x \cdot \exp \left(-b x^{2}\right)$; (c) i.exp(-bx²) ; (d) $\sin (b x)$

Lecture 2 FIB

If $\mathrm{m}=1 \times 10^{-3} \mathrm{~kg} \quad \mathrm{~A}=0.10 \mathrm{~m}$ and $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Q1) For a particle in a box with Wavefunctions and Energy:

$$
\psi_{n}=A \sin (\alpha x)=A \sin \left(\frac{n \pi}{a} x\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}
$$

I. Show that the wavefunction is an eigenfunction of the Hamiltonian operator.
II. Normalize the wavefunction and find A
III. Calculate the following quantities:

IV. Find the number and position of nodes for $n=1,2,34$
V. Find the probability of finding the particle in
I. $0.24 L \leq x \leq 0.26 L$
II. $0 . \leq x \leq 0.25 L$

Q1 Consider an electron in a 1 Angstrom box. Calculate
(a) The Zero Point Energy (ie. minimum energy)
(b) The minimum speed of the electron

Q2) Consider a 1 gram particle in a 10 cm box. Calculate
(a) The Zero Point Energy (ie. minimum energy)
(b) the minimum speed of the particle

Q3) Calculate the probability of finding a particle with $n=1$ in the region of the box between 0 and $a / 4$
Q4) Show that the two lowest wavefunctions $\psi 1$ and $\psi 2$ of the PIB are orthogonal:
Q5) Show that the two lowest wavefunctions $\psi 1$ and $\psi 1$ of the PIB are orthonormal

